• HiredScore
    北美HR行业观察:从SAP与Workday的收购和Dayforce 123亿美元私有化到传统招聘网站倒闭裁员,HR科技走向何方 2025 年,HR 科技行业迎来资本主导的新周期。SAP 收购 SmartRecruiters(约 15 亿美元)、Workday 收购 Paradox(15–20 亿美元)、Paychex 41 亿美元并购 Paycor,Dayforce 更是以 123 亿美元完成私有化,创下近年最高纪录。与此同时,CareerBuilder 与 Monster 宣布破产,传统招聘门户彻底退出主舞台,而 Indeed、Glassdoor、Dice 等头部平台也因收入压力掀起裁员潮。HRTechChina 认为,行业正在由“流量驱动”转向“平台化与资本驱动”,未来三到五年,平台主导与商业模式更新将成为核心趋势。 资本并购:套件厂商加速补齐短板 2025 年的 HR 科技行业并购步伐异常密集。SAP 宣布收购 SmartRecruiters,其估值约在 15 亿美元左右,这是 SAP SuccessFactors 在招聘领域的重要补位;Workday 宣布收购会话式招聘平台 Paradox(预计交易金额在 15–20 亿美元之间),此前它已收购 HiredScore 与 Flowise,正在逐步形成一个覆盖发现、匹配、对话到招聘入职的完整 AI 招聘体系;Paychex 则以 41 亿美元收购 Paycor,这一交易在中端 HCM 市场堪称标志性事件,显示薪资与人力平台的整合正进入新阶段。 通过这些收购,HCM 巨头们正在强化端到端能力,巩固其在不同层级市场的地位。对于 SAP、Workday 来说,并购不仅仅是功能补充,更是平台竞争力与市场版图的战略扩张。 私有化浪潮:Dayforce 的大额退市 与并购同步,私有化也在重塑行业格局。2025 年 8 月,Dayforce 宣布与 Thoma Bravo 达成协议,将以 123 亿美元的总价退市,股东将获得每股 70 美元的现金溢价。这一交易是近几年 HR 科技领域金额最高的私有化案例之一。 私有化意味着 Dayforce 将摆脱季度财报压力,获得更大的战略灵活度。未来,它可以更加专注于全球薪资、劳动力管理和 AI 驱动的长期布局。这一案例也说明,私募基金正在通过资本运作重新定义 HR 科技公司的发展路径,把更多资源押注在长期增长与平台化能力上。 传统招聘网站的衰落与破产 如果说 HCM 平台的收购与私有化代表着行业集中度的提升,那么传统招聘网站则在经历另一种命运。2025 年,CareerBuilder 与 Monster 在长期亏损和竞争力下降后,进入破产与资产出售程序。Monster 的部分资产由 PartnerOne、Valnet 等公司收购,品牌与部分业务仍在维持,但其黄金时代已经结束。 这些平台在过去十余年曾是招聘行业的入口,但在 LinkedIn、Indeed 以及新兴 AI 招聘技术的冲击下,传统流量型门户逐渐失去了话语权。破产不仅意味着模式的失败,也代表了行业从“广告驱动”向“智能匹配和平台化”彻底转变。 招聘巨头的裁员潮 即便是仍在市场前列的招聘平台,也未能幸免于行业调整。2025 年,Indeed、Glassdoor、Dice 等知名招聘平台相继传出裁员消息。它们的业务模式依然依赖于招聘广告和流量转化,但在经济环境趋紧与 AI 自动化招聘崛起的背景下,收入增速放缓、盈利承压。 裁员潮反映出两个趋势:一是传统的广告与订阅模式正在逐渐被边缘化;二是招聘市场对效率与体验的要求不断提升,而依赖“海量简历投递”的旧模式已经难以满足雇主与候选人的需求。 行业趋势与未来展望 从资本市场的角度看,2025 年 HR 科技行业的走势非常清晰。一方面,SAP、Workday、Paychex 等巨头通过收购强化平台化能力,推动行业集中度进一步提升;另一方面,私募基金通过大额私有化交易让公司摆脱资本市场的短期约束,转向长期战略发展。 与此形成对比的是,传统招聘门户的衰落和招聘广告模式的坍塌,表明行业正在进入一个全新的阶段。招聘的核心不再是“流量和曝光”,而是“匹配和体验”。未来,能够通过平台化和智能化手段帮助企业高效找到合适人才的厂商,将在竞争中脱颖而出。 NACSHR 认为,这一轮变革本质上是资本逻辑与商业模式的双重演进:资本通过并购和私有化推动行业集中,技术则通过平台化和智能化颠覆旧有模式。未来三到五年,HR 科技行业将走向“平台主导、资本驱动、模式更新”的全新时代。 来源:公司公告、新闻稿、行业分析报道(SAP、Workday、Paychex、Dayforce、CareerBuilder、Monster、Indeed、Glassdoor、Dice 等公开信息)
    HiredScore
    2025年08月23日
  • HiredScore
    Josh Bersin: When Will The Trillions Invested In AI Pay Off? Sooner Than You Think. 近年来,生成式人工智能(GenAI)的投资已达数万亿美元,但围绕其回报问题的争论不断升级。一些分析师,如麻省理工学院教授达隆·阿西莫格鲁(Daron Acemoglu)和纽约大学心理学与神经科学教授加里·马库斯(Gary Marcus),对AI的经济影响持悲观态度,认为其对美国生产力和GDP增长的推动作用有限,甚至可能导致市场崩溃。相反,另一派如高盛的全球经济学家则乐观地认为,AI有望在未来十年内大幅提高生产力。然而,文章指出,生成式AI的真正价值在于其特定领域的应用。例如,Paradox和Galileo等HR技术平台通过高度专业化的解决方案,显著提升了招聘和人才管理的效率。最终,文章强调,AI行业仍处于早期阶段,成功的关键在于找到具有专注性和精确性的创新解决方案。 In the last few weeks there has been a lot of concern that Gen AI is a “bubble” and companies may never see the return on the $Trillion being spent on infrastructure. Let me cite four analyst’s opinions. Will Today’s Massive AI Investments Pay Off? MIT professor Daron Acemoglu estimates that over the next ten years AI will impact less than 5% of all tasks, concluding that AI will only increase US productivity by .5% and GDP growth by .9% over the next decade. As he puts it, the impact of AI is not “a law of nature.” On a similar vein, Gary Marcus, professor emeritus of psychology and neural science at New York University, believes Gen AI is soon to collapse, and the trillions spent will largely result in a loss of privacy, increase in cyber terror, and a lack of differentiation between providers. The result: a market with low profits and big losses. Goldman Sachs Head of Equity Research Jim Covello is similarly pessimistic, arguing simply that the $1 Trillion spent on AI is focused on tech that cannot truly automate complex tasks, and that vendors’ over-focus on “human-like features” will miss the boat in delivering business productivity.  (He studies stocks, not the economy.) And Goldman Sachs Global Economist, who is a fan, estimates that AI could automate 25% of work tasks and raise US productivity by 9T and GDP by 6.1% over the next decade. He follows the traditional business meme that “AI changes everything” for the better. What’s going on? Quite simply this new technology is very expensive to build, so we’re all unsure where the payoffs will be. Buyers Are Looking For A Return Soon If we discount the work going on at Google, Meta, Perplexity, and Microsoft to build AI-based search businesses, which make money on advertising (Zuckerberg essentially just said that in a few years AI will guarantee your ad spend pays off), corporate IT managers are asking questions. An article in Business Insider pointed to a large Pharma company that cancelled their Microsoft Copilot licenses because the tool was not adding any significant value (Chevron’s CIO was quoted similarly in The Information). Another quoted a Chief Marketing Officer who stated Google Gemini’s email marketing tool and the new AI-powered ad-buying tool performed worse than the human workers it was intended to replace (or support). Given that these tools almost double the “price per user” for the productivity suites, I think it’s fair that CIOs, CMOs, to expect them to pay for themselves fairly quickly. What’s Going On?  The Big Wins Will Be Domain Specific As with all new technologies that enter the market quickly, “the blush on the rose” is over. We’ve been dazzled by the power of ChatGPT and now we’re searching for real solutions to problems. And unlike the internet, where research was funded by the government, there’s going to be a lag (and some risk) between the trillions we spend and the trillions we save. Given that ChatGPT is less than two years old and OpenAI has morphed from a research company into a product company, it’s easy to see what’s happening. Every vendor and tool provider is narrowing its AI “strategy” and not just pasting little AI “stars” on their websites, looking for useful things to do. And this process may take a few years. In the world of HR, I think we can all agree that a “push the button job description generator” is a bit of a commodity. However if the AI analyzes the job title, identifies the skills needed through a large skills engine, and tunes the job description by company size, industry, and role, then it’s a fantastic solution.  (Galileo does this, as does SeekOut, SAP, and some other vendors.) The more “specific” and “narrow” the AI is, the more useful it becomes. Generic LLMs that aren’t highly trained, optimized, and tuned to your company, business, and job are simply not going to command high prices. So while we all thought ChatGPT was Nirvana, we’re now figuring out that highly specialized solutions are the answer. Let me give you some examples. The first is the platform built by Paradox, a pioneering company that started work on AI-based recruiting agents in 2016. Paradox, now valued at around $2 Billion, delivers an end-to-end recruitment platform that automates the entire process of candidate marketing, candidate experience, assessment, selection, interview scheduling, hiring, and onboarding. Most people believe its a “Chatbot” but in reality it’s an AI-powered end-to-end system that radically simplifies and speeds the recruitment process in a groundbreaking way. Companies like 7-11, FedEx, GM, and others see massive improvements in operational efficiency and both candidates, managers, and recruiter adore it. It took Paradox eight years to build this level of integrated solution. The second is our platform Galileo. Galileo, which is now licensed by more than 10,000 HR professionals, is a highly tuned AI agent specifically designed to help HR professionals (leaders, business partners, consultants, recruiters, and other roles) do the “complex work” HR professionals do. It’s not a generic LLM: it’s a highly specialized solution designed specifically for HR professionals, and we’ve added specialized content partners and are building special integrations with other HR platforms. Our clients tell us it’s saving them 1-2 hours a day. The third is the platform HiredScore, that was recently acquired by Workday. Founded in 2012, the HiredScore team built tools to help identify “fit” between individuals and jobs, and tuned its AI to be highly explainable, unbiased, and very easy to use. It took Athena Karp and the team a few years to nail down the use-cases and user interface but now HiredScore is considered one of the most powerful recruitment “orchestration” tools in the market, and is also used for internal hiring and many other applications. Every customer I talk with tells me it’s essential and saves them months of manual, error-prone effort. The fourth is the platform Eightfold, which was invented in 2016 as a way to build “Google-scale” matching between job seekers and jobs. Through many years of engineering, product management, and ongoing sales process the company has become the leader in a new space called “Talent Intelligence,” now a billion dollar rapid-growing category. The company is about ten years old and now has some of the world’s largest companies building their hiring, career management, and talent management processes using AI. Companies like EY, Bayer, and Chevron now use it for all their strategic talent programs. Each of these vendors, including others like Gloat, Sana, Arist, Lightcast, Draup, Uplimit, Firstup, and hundreds of others have patiently taken the power of Generative AI and applied it with laser precision to their solutions. Each of these companies is different, and as we work with them we see lightning bolts of innovation: not in AI itself, but in finding new ways to solve problems and do what I call “crawling up the value curve.” This is the path for AI in the coming years. As with all new technologies, the “trough of disappointment” is always followed by the “bowling pin” of hitting the nail on the head. Innovators, entrepreneurs, and startup founders are the ones who will take GenAI and apply it in unique ways to solve problems. And soon enough, “AI-powered” will be a phrase we barely even need to say. The Best Solutions Will Be Narrow Not Wide GenAI solutions require a large “platform” of data, infrastructure, and software. That alone is not where the value resides. Rather, the big productivity advantages come after years of effort, focusing the data sets and working with customers to find the features, UI designs, and data sets that add enormous value. And we are still in the early stages. If you want to learn more about HR Technology and AI, join me at the HR Technology Conference on September 24-25 in Vegas, or at Unleash in Paris in October 16-17. While I can’t predict who will win the core AI platform game (Microsoft, OpenAI, Google, Meta, Amazon will fight it out), I can predicts this: Generative AI will deliver massive improvements in business productivity. You just have to shop around a bit and wait for just the right solutions to arrive.
    HiredScore
    2024年08月10日
  • HiredScore
    Workday收购HiredScore的意义,这可能颠覆人力资源科技领域 Workday计划收购HiredScore,这是人力资源技术领域的一次重大变革。HiredScore是一家领先的基于AI的招聘匹配工具提供商,此举将大大增强Workday在人才智能和招聘方面的能力。这次收购预计将整合HiredScore的专长到Workday的系统中,显著改善其应聘者追踪系统(ATS)、技能云和整体人才智能产品。此战略性收购可能会重塑人力资源软件市场,迫使其他供应商加速他们的AI计划,可能激发一轮新的收购热潮。 以下是原文: This week Workday announced intent to acquire HiredScore, a leading provider of AI-based matching tools for recruiting (called “talent orchestration”). While it wasn’t discussed much in the earnings call, this deal is a big positive for Workday and could have many implications for the HR Tech market. Let me explain. (I have not been briefed by Workday yet, so more information will come as I learn more.) Right now there is a massive marketplace war for high-powered AI-based recruiting tools (estimated at $30.1 billion). Historically dominated by applicant tracking systems (ATS), this market provides essential technology to help every company grow. The ATS market, which is more than 25 years old, has been rapidly transformed with high-powered AI tools that help with candidate matching, search, skills inference, and sourcing. And now that AI tools are readily available, these systems are becoming big data platforms loaded with billions of employee profiles, running complex AI models to help match people to jobs, projects, and gigs. Most ATS vendors (including Workday) have slowly extended into this space through matching. The original idea of a resume parser (software that reads a resume and scores it against a job description) has evolved into complex text analysis and AI-powered inference technology, forcing ATS vendors to invest. As the ATS vendors enhance their AI capabilities, a parallel universe of AI-first Talent Intelligence vendors emerged. These vendors, like Eightfold, Gloat, Beamery, Phenom, Seekout, Skyhive, Retrain, and Techwolf are building skills-centric big data platforms to match people to jobs, gigs, and mentors. These systems do much more than rate matches: they identify skills, find adjacent skills, match people to careers, find mentors, and more. They are essentially open big-data AI platforms built on vector databases that can be used for many enterprise apps (job architecture design, skills planning, internal mobility, pay equity analysis, etc.). In many ways they represent the future of HR Tech. (Read our Talent Intelligence Primer for more.) As the Talent Intelligence vendors grow, they start to deliver “HCM-threatening” platforms that impinge on the HCM “System of Record” idea. If you have all your employees, candidates, alumni, and prospects in Eightfold, Phenom, Seekout, or Gloat, for example, Workday or SAP look like a tactical payroll and workflow management system. (ServiceNow also understands this, and is building talent intelligence into its workflow platform.) Up until now the big HCM vendors like Workday, Oracle, and SAP have struggled to build these new systems, largely because their original architectures were not AI-based. So they’ve attracted customers with offerings like the Workday Skills Cloud or SAP Opportunity Marketplace that aren’t fully completed yet. We have talked with dozens of Workday Skills Cloud customers, for example, and they see it as an important “skills system of record,” but its real AI matching and inference capabilities have been limited. Along comes HiredScore, a well respected AI-based matching system with 150 employees and 40+ seasoned AI engineers in Israel. These folks are experts at candidate matching (quite a complex problem), and they’ve built a very innovative “orchestration” system to help line managers coordinate activities with HR business partners and recruiters (more on this later). While I’m sure they’ll continue to build out HiredScore, they can also contribute to Workday’s overall talent intelligence offering, improving the entire system – including the Skills Cloud, Workday Learning, Workday’s Talent Marketplace. As large as the recruiting software market is, the market for internal career tools, talent mobility, skills inference, and corporate learning is five times bigger. This acquisition gives Workday a shot in the arm to accelerate its entire AI platform strategy. (As the Identified acquisition did back in 2014.  Identified was the roots of the Workday Skills Cloud.) Market Implications Of This Move This move could change the market for HR software in a few significant ways. First, Workday Recruiting customers will be thrilled. Workday’s ATS now benefits from a first class matching and candidate scoring solution. This helps Workday compete with the bigger ATS players and gives Workday a new revenue source as they sell HiredScore to the existing 4,000+ Workday ATS customers. (Similar to the Peakon acquisition in Employee Experience.) And the talent orchestration features (kind of like a “staffing copilot”) gives Workday a very unique feature set. Second, this forces Workday’s talent intelligence partners to step up their game. Remember when Apple acquired Dark Sky, the most compelling micro-weather app on the market? Once they integrated it into Apple’s other apps, the market for third party weather apps went away. Workday could limit its partner network to avoid letting HiredScore competitors into the ecosystem. Third, this forces HCM vendors to accelerate their AI. Since HiredScore is such a well-respected product (every client we talk with adores it), it will become part of Workday demos and sales proposals quickly. Workday’s HCM competitors will start scratching around to find a similarly mature AI vendor to acquire. And that could kick off another round of acquisitions, similar to the frenzy that took place in the mid 2010s. Finally, there’s one more scenario, and I give this good odds. Not to be outdone by Workday, the Talent Intelligence vendors may just expand their ATS capability and decide to go “full stack.” I wouldn’t be surprised to see this happen. Why Is AI-Based Candidate Matching So Important Why is this technology so important? Well if you’ve ever tried to recruit on Indeed or LinkedIn, you know why. The quality and reliability of “candidate matching technology” is a lynchpin of a talent platform. Just as Google Search crushed Yahoo, Excite, and Inktomi, a powerful next-gen matching tool adds an enormous amount of value. Not only does it speed talent acquisition, it fuels all the internal mobility, career portals, skills, and eventually learning and pay systems. Why do I say this?  A “match” is a sophisticated problem. Unlike a Google search which looks at text and traffic, when you search for a person to fill a role you have to think about dozens of complex relationships. What are this person’s skills and capabilities? What are their credentials or certifications? Who else are they connected with? How likely will they fit into the job, role, and company? What is the impact of their industry experience? What tools and technologies do they understand? And it gets much more complex. The Heidrick Navigator platform (built on Eightfold), uses AI to assess functional skills for management and leadership, identifies a person’s “ability to drive results,” and more. This important application of AI powers many of the most important decisions we make in business. That’s why the Talent Intelligence space is growing so fast. As of this week there are more than 1,800 Director or VPs of “Talent Intelligence” in LinkedIn, and that number is up almost six-fold from one year ago. Can Workday take the lead in this emerging space?  It’s impossible to tell at this point, but the horses have left the gate and the race is on. This deal sets the players in the right lanes and feels like the earthquake to shake things up.  
    HiredScore
    2024年03月01日